
CNN solutions for Pixel-Level ID

Aaron Higuera (UH, US)

Piotr Płooski (WUT, PL)

Aidan Reynolds (Oxford, UK)

Andrea Scarpelli (APC, France)

Daniel Smith (BU, US)

Dorota Stefan (CERN/NCBJ, CH/PL)

Robert Sulej (FNAL/NCBJ, CH/PL/US…)

Leigh Whitehead (CERN, CH)

Support on Tensorflow from Lynn Garen and LArSoft team

 Outline

• what we are doing

• how, and what could be gained from common tools

• path forward

Pixel-level activity classification: basic idea

• Identify low-level features, independent from long range / full event context

• EM-like / track-like discrimination

• Michel electron activity identification

• Vertex identification & classification (interaction / decay ID, gamma conversion, …)

• Support standard reconstruction or additional input to higher level ML

• Several direct applications to physics & calibration

• Use raw ADC: no hit-related inefficiencies

Pixel-level activity classification: low level features

• …independent from long range / full event context

• limit the patch rage to the minimum: avoid effects of incorrect sim of inetactions

• there is still ionization shape (somewhat handled with drift downsampling)

 accurate detector sim (it was for LArIAT, may not be that easy for 3x1x1)

 or explore more GAN, VAE, …

• noise is also a factor, however easier to simulate or take from data

EM/track in ProtoDUNE: CNN combined with reconstruction

single hit predictions

cluster predictions

threshold applied,
ready for 3D tracking

3D tracks: P(track-like)
- use all projections

MC truth:
• track-like
• EM-like

EM/track in ProtoDUNE: CNN combined with reconstruction

EM component

EM component Hadronic component

Hadronic component

pions, protons
…. MC
--- reco

pions, reco
--- with SCE
--- no SCE

EM/track in LArIAT: test on real data

EM/track in neutrino events

EM component Hadronic component

EM component Hadronic component

re
co

re
co

MC MC

dual-phase 3x1x1 prototype data is waiting

• models were already prepared for dual-phase MC

• need to do the work on data… this is the target, not MC

 do MC-data overlay for most realism of noise  physics week now
 investigate signal shape differences: back to GAN idea?

As for all high and low level pattern recognition cases:
 need to control nuisance parameters and feature differences in MC/data

Michel electron selection: see more on DUNE physics week

logP(decay vertex)

EM/track

Michel activity

Vertex location / classification

• decay / interation vertex ID used also for NDK work (Aaron)

• more vertex ID: EM shower vertex (Leigh)

https://indico.fnal.gov/event/15601/contribution/0/material/slides/0.pdf
https://indico.fnal.gov/event/15601/contribution/0/material/slides/0.pdf
https://indico.fnal.gov/event/15601/contribution/0/material/slides/0.pdf
https://indico.fnal.gov/event/15601/contribution/0/material/slides/0.pdf
https://indico.fnal.gov/event/15601/contribution/0/material/slides/0.pdf
https://indico.fnal.gov/event/15601/contribution/0/material/slides/0.pdf

Moving to technical issues…

• EM/track and Michel selection applied at all hit locations

• single CNN model, improvments from architecture/trainning
customization

• production mode needs really fast calculation

• few Michel examples, many EM/track per event

• majority of „easy” cases, difficult are less frequent but most
important to solve

• Vertex ID applied to points/hits in selected regions

• 1-to-few training examples per event

 speed: training, production

 training set optimization

 architecture optimization

data representation / generators

Usual workflow for CNN preparation

G4 sim, detsim, signal processing

(and any required reco)

LArSoft

Model prototyping, training, tests

Python, Keras API +Tensorflow backend

Load the graph, apply CNN

(model is fixed, „inference mode”)

LArSoft

save graph description,
model coefficients

does not need to be CNN/CVN

• graph needs only a simple I/O interface,

• straightforward to port to any framework

• one can mix even different backends: Caffe / TF
can read the sam format

Theano used previously, quite faster,
but no C++ API

(Theano + our old, simple API could handle „sequential” graph, single output layer only)

EM – track – none layer, multi-class
softmax / cross-entropy

Michel-or-not layer, binary
sigmoid / MSE

Fast learner!
EM/track regularizes the
Michel output

Simple and work very well,
but slower training

Graphs

Graphs

 description of CNN ideally suited for parallelization:

-- input / output data as a tensors

-- batch of input tensors processed in parallel with a single graph

 calculations decomposed into a basic building blocks to profit from parallelization & vectorization

 TF and Keras toolkits provide API to handle complex graphs in a few lines, no need to see all details

 not for „if-else” heavy solutions

inputs

outputs

each input-output can be
calculated in parallel to others

operations inside graph
can run in parallel

single operation can be
parallelized (e.g. kernel applied

to every element in tensor)

CPU/GPU can apply simple
math instructions to multiple

operands

graph

op

op

op

op

op

import tensorflow as tf

with tf.Session() as sess:

 a = tf.Variable(5.0, name='a')

 b = tf.Variable(6.0, name='b')

 c = tf.multiply(a, b, name="c")

 sess.run(tf.global_variables_initializer())

 print a.eval() # 5.0

 print b.eval() # 6.0

 print c.eval() # 30.0

 tf.train.write_graph(sess.graph_def,

 'models/', 'graph.pb', as_text=False)

main_input = Input(shape=(img_rows, img_cols, 1),

 name='main_input')

x = Conv2D(nb_filters1, (nb_conv1, nb_conv1),

 padding='valid', data_format='channels_last',

 activation=convactfn1)(main_input)

x = Dropout(drop1)(x)

x = Flatten()(x)

x = Dense(densesize1, activation=actfn1)(x)

x = Dropout(drop2)(x)

x = Dense(densesize2, activation=actfn2)(x)

x = Dropout(drop2)(x)

em_trk_none = Dense(3, activation='softmax‚,

 name='em_trk_none_netout')(x)

michel = Dense(1, activation='sigmoid',

 name='michel_netout')(x)

sgd = SGD(lr=0.01, decay=1e-4, momentum=0.9, nesterov=True)

model = Model(inputs=[main_input],

 outputs=[em_trk_none, michel])

model.compile(optimizer=sgd,

 loss={'em_trk_none_netout': 'categorical_crossentropy',

 'michel_netout': 'mean_squared_error'},

 loss_weights={'em_trk_none_netout': 0.1,

 'michel_netout': 1.})

Can describe every custom
detail with TF:

…but usually use Keras as a high
level API for TF:

C++ API for TF allows building graphs on the fly, but
what we really need is loading graphs worked out in
Python: this is available now in UPS.

Graphs

Only this part is saved for the inference mode,
the grey rest is needed during the training.

Can expand a blocks of nodes:
CNN layers are easy to create with
API, but you may want to see your
own constructs details.

Graphs

EM-like selection ROC Michel-like selection ROC

old model
new, 1 x conv-2D
2 x conv-2D

old model
new, 1 x conv-2D
recent model from Aidan

Performance with adjusted architecture

Running on the grid

• old code: almost no parallelization, little vectorization

• Tensorflow – extremely flexible parallelization, code optimized, but: still cannot use full vectorization
(no AVX on some grid CPUs)

• need convenient mechanism to select code that fits hardware: old CPU / GPU / KNL / …

• parallelization / vectorization may be very dependent on backend: target also Caffe / TF selection

old model / code same size model / new code / two rounds of grid submissions

Simple c++ implementation of CNN, 4 CPU

===

TimeTracker printout (sec) Avg

===

Full event 1029.31

source:RootInput(read) 0.00172957

reco:rns:RandomNumberSaver 0.000820898

reco:caldata:DataPrepModule 7.14426

reco:gaushit:GausHitFinder 65.1564

reco:hitfd:HitFinder35t 107.047

reco:linecluster:LineCluster 1.5267

reco:emtrkmichelid:EmTrackMichelId 606.107

reco:pmtrack:PMAlgTrackMaker (beam+cosmics) 152.281

reco:pandora:StandardPandora (only cosmics) 72.9939

reco:TriggerResults:TriggerResultInserter 0.000111717

end_path:out1:RootOutput 2.9803e-05

end_path:out1:RootOutput(write) 17.0451

===

MemoryTracker summary (base-10 MB units used)

 Peak virtual memory usage (VmPeak) : 3884.21 MB

 Peak resident set size usage (VmHWM): 2863.01 MB

===

TimeReport ---------- Time Summary ---[sec]----

TimeReport CPU = 1321.828051 Real = 1037.665077

Tensorflow, using AVX, 4 CPU

===

TimeTracker printout (sec) Avg

===

Full event 486.511

source:RootInput(read) 0.00148615

reco:rns:RandomNumberSaver 0.000784336

reco:caldata:DataPrepModule 7.04595

reco:gaushit:GausHitFinder 65.6555

reco:hitfd:HitFinder35t 115.82

reco:linecluster:LineCluster 1.75606

reco:emtrkmichelid:EmTrackMichelId 50.716

reco:pmtrack:PMAlgTrackMaker 152.856

reco:pandora:StandardPandora 76.3032

reco:TriggerResults:TriggerResultInserter 0.000106771

end_path:out1:RootOutput 4.4151e-05

end_path:out1:RootOutput(write) 16.3541

===

MemoryTracker summary (base-10 MB units used)

 Peak virtual memory usage (VmPeak) : 4463.87 MB

 Peak resident set size usage (VmHWM): 3052.71 MB

===

TimeReport ---------- Time Summary ---[sec]----

TimeReport CPU = 620.489671 Real = 494.307292

On a ProtoDUNE full event: 6 APA’s, beam event + ~60-70 cosmic tracks

 CNN runs 10x faster, no longer bottleneck, but it is not the only thing in the reco chain

 parallelization has an overhead, likely allocating 2 or 4 CPU on the fermigrid should be optimal

 the larger batch of inputs, the faster processing, …and more memory needed

 optimally, feature maps should be done once / event, not redone for each patch…

Upcoming work: more brain power on training data handling

1. EM / track / Michel: simple workflow enough

 ADC / PDG maps in ROOT histograms, then „patch” preparation for the training

 training set composition „optimized” manually (otherwise heavy weapon for a simple task)

 straigt-forward data augmentation (flips only)

2. More towards CNN/reco combined: disambiguation and segmentation, work waiting for the
Ph.D. student

 ADC / TrackID maps in ROOT histograms, will need multiple resolution „glimps”

 training batches should be generated o the fly

 likely will go for automated opimization of training set

3. primary vertex location: main focus now due to the DUNE TDR

 ADC maps in ROOT histograms, 1 byte / pixel, ~150-180 kB / DUNE LBL n event – ready

 multiple resolution „glimps”, recurrent CNN: batches MUST be generated o the fly – ready

 automated opimization of training batches – ongoing

 NOTE non-trivial issues with the wire wrapping and „global image” – done in a hacky way

Wrapped wires can be very annoying…

Training data representation

For practical work:

 need >1M events in memory, can swap from disk occasionally

 need fast unpacking for the batch generation purposes

 no strong downsampling (not below the detector effective resolution)

Items to try today?

 load Caffe model with TF/Keras, …or vice versa and include Caffe backend in
EM/track inference

 modify CVN for 2-view dual-phase neutrinos

 look what event formats others are using

